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bstract

Adjoint methods suitable for obtaining sensitivity derivatives for numerical simulations of solid-oxide fuel cells are presented. The adjoint
ethod is derived, and the implementation is discussed, including a methodology for accurately obtaining all the linearizations necessary for

orrect implementation. Results are included for a one-dimensional anode model that includes diffusion, permeation, and relevant chemical
eactions. Using this model, the accuracy of the sensitivity derivatives is demonstrated for design variables describing geometric and material

roperties of the anode. Finally, the adjoint method is demonstrated for a three-dimensional fuel cell geometry where sensitivity derivatives are
btained for approximately 180,000 design variables. The results are used to modify the upper and lower walls of the plenum to obtain significantly
mproved distribution of fluid amongst the channels.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Numerical simulations of solid-oxide fuel cells (SOFC) have
een used to gain understanding of important physical phenom-
na and to supply guidance in the continuing development of
mproved fuel cells [1–8]. To date, the simulations have been
rimarily focused on analysis of fuel cells or fuel cell compo-
ents, without strong emphasis on utilizing the simulations in a
esign optimization environment. Because of the emphasis on
nalysis instead of design, sensitivity information to determine
he effects of variations in design parameters on performance
as been primarily implemented by simply changing the param-
ter of interest, re-running the simulation, and comparing the
esults with those from the original simulation [1,5,6,8]. While
his approach can be used to determine the effects of parameter
ariations on fuel cell performance, a more rigorous approach

oward optimization would likely lead to better designs, and
an also provide improved insight into the parameters affecting
he performance of the fuel cell. For SOFC problems, exam-
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le cost functions that can be used for improving performance
nclude minimizing temperature variations, obtaining equal dis-
ribution of fuel in each of the channels, or maximizing power.
lthough not included in this study, time-dependent formula-

ions are also possible that may be useful for minimizing start-up
nd short-term transient times. Design variables may be related
o the shape/size of the fuel channels, electrodes, electrolyte,
nd interconnect, but may also be coupled to the stoichiometric
omposition of fuel or material properties such as the porosity
r tortuosity of the electrodes.

In refs. [9,10], optimization algorithms have been used to
mprove the performance of a polymer-electrolyte-membrane
uel cell (PEM) using four design variables, where the sen-
itivity derivatives used for the optimization algorithm have
een obtained using a finite-difference approach. While finite
ifferences are often a viable means for computing sensitiv-
ty derivatives, this method can be computationally restrictive
hen a sufficiently large number of design variables are present.

n addition, accurate derivatives can sometimes be difficult to
btain using finite differences because of subtractive cancella-
ion errors [11,12], which occur when the function evaluations in

he numerator become computationally indistinguishable when
ery small perturbations are used. To date, there has not been
xtensive research targeted at providing accurate sensitivity
erivatives that may be used in conjunction with optimization
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Nomenclature

B effective permeability coefficient (m2 s−1)
c molar concentration vector (kmol m−3)
Dij binary diffusion coefficient (m2 s−1)
Dm
ij effective diffusion coefficient (m2 s−1)

Dkn
i Knudsen diffusion coefficient (m2 s−1)

f cost function (cost function dependent)
h mesh size (m)
I current density (A m−2)
J mass flux vector (kg m−2 s−1)
Kn Knudsen number
kb backward reaction rate (reaction type dependent)
kf forward reaction rate (reaction type dependent)
L augmented cost function (cost function depen-

dent)
M molecular weight (kg kmol−1)
N molar flux vector (kmol m−2 s−1)
p pressure (N m−2)
Q solution vector (solution variable dependent)
〈r〉 mean pore radii (m)
〈r2〉 mean of squared pore radii (m2)
R discrete residual (kg m−3 s−1)
Rate reaction rate (kmol m−3 s−1)
S source term vector (kg m−3 s−1)
ta anode thickness (m)
T temperature (K)
V control volume (m3)
Xi mole fraction of ith species

Greek symbols
Λ costate variable vector (cost function dependent)
Ωd collision integral
β design variable vector (design variable depen-

dent)
χ grid vector (m)
ε Lenard–Jones parameter (m2 kg s−2)
η molecular viscosity (kg m s−1)
ν square root of relative molecular weight
ρ mass concentration (kg m−3)
σ collision diameter (Å)
ψ porosity/totruosity

Constants
F Faraday constant 96484.56 (A s mol−1)
K Boltzmann constant 1.3806503 × 10−23 (J K−1)
Ru universal gas constant 8314.4 (J kmol−1 K−1)

Indices
d diffusion
i, j chemical species
kn Knudsen
p permeation
r reforming reaction
s shift reaction
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lgorithms to systematically improve existing fuel cell designs,
articularly when there are many design variables. By using an
djoint method, sensitivity derivatives may be obtained for use
n a design optimization environment. A particular strength of
djoint methods is that sensitivity information can be obtained
ith a computational cost that is only weakly dependent on the
umber of design variables, and is therefore enabling technology
or design studies where many design variables are required.

In recent years, adjoint methods have been developed and
tilized for numerical simulations in the aerodynamic com-
unity for sensitivity analysis, error estimation, and adaptive
eshing [13–24]. For sensitivity analysis, adjoint methods are

xtremely valuable for determining the derivatives of engi-
eering cost functions that depend on many design variables.
lthough sensitivity information could theoretically be obtained
y systematically varying each design parameter independently,
he cost of repeating the simulation with each variation of a
esign variable renders this approach unusable when a large
umber of parameters are present. The adjoint method is par-
icularly suited to this class of problems because the sensitivity
erivatives can be obtained for all design variables with the com-
utational cost of a single solution of the nonlinear system used
or analysis, a single solution of the linear adjoint system, and a
atrix-vector multiply.
The primary goal of this study is to formulate and develop

djoint methodology for practical applications to fuel cells, with
articular emphasis on solid-oxide fuel cells. The adjoint method
s formulated and developed for SOFC applications to provide
ensitivity derivatives of engineering cost functions. The adjoint
ethod is then demonstrated using the one-dimensional model

f transport phenomena inside an SOFC proposed by Lehnert in
ef. [5]. Here, sensitivity derivatives with respect to geometric
nd material properties of the anode are obtained for the molar
oncentration of hydrogen at the interface between the anode
nd the electrolyte. Finally, a three-dimensional application is
ncluded where the cost function is based on the requirement of
qually distributing fluid through the channels. As a demonstra-
ion, sensitivity derivatives are obtained for all the mesh points
efining the surface of the geometry, totaling more than 180,000
esign variables. Grouping some of these design variables to
escribe the shape of the upper and lower walls, the resulting sen-
itivity derivatives are then used to reshape the walls to achieve
mproved distribution of fluid amongst the channels.

. Discrete adjoint method

The goal of an adjoint method is to determine sensitivity
erivatives that can be used in a formal optimization procedure
or minimizing a specified cost function, which is indicative of
he performance of the system. In a design setting, a vector of
esign variables is chosen that will be allowed to change during
he optimization procedure. These design variables may be geo-
etric in nature or may be indicative of physical parameters such
s porosity and tortuosity of the anode and cathode or specific
oncentrations of chemical species in the inlet. The sensitivity
erivatives reflect the changes in the defined cost function with
espect to each of the design variables.
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A general optimization procedure begins by first defining a
eaningful cost function and a desired set of design variables.
numerical analysis of the baseline system is then performed.

he results of the analysis include the solution variables Q of the
iscretized partial differential equations, which are subsequently
sed to determine the initial cost. Because the numerical anal-
sis involves discretization of the partial differential equations
n a computational mesh, it should be noted that Q represents
he vector of solution variables where each element of the vec-
or is representative of one or more physical variables located
t each mesh point, χ. Before reaching a local minimum during
he optimization procedure, the solution of the partial differential
quations and the resulting cost function will change in response
o changes in the design variables. Note that if any of the design
ariables are representative of the shape of the geometry, then
ith each change in these design variables, the mesh must also
eform to represent the new shape. Ultimately, the cost func-
ion may have an explicit dependence on the vector of design
ariables, β, but will also have an implicit dependence because

and χ may also depend on the design variables. Therefore,
he cost function is typically written to indicate the implicit and
xplicit dependence on the design variables as,

= f (Q(β), χ(β), β) (1)

After the analysis problem has been solved and the cost
unction has been computed, the next step in the optimization
rocedure is to determine sensitivity derivatives. There are many
ptions available for determining the sensitivity derivatives
ncluding finite differences, forward differentiation [25,26], and
djoint methods [13–23]. In this work, adjoint methods are
sed because of their ability to efficiently determine sensitiv-
ty derivatives for a large number of design variables. Once the
ensitivity derivatives are obtained, they are used as input to an
ptimization code, such as a quasi-Newton method, to determine
uitable changes to the design variables to obtain a decrease in
he cost function. The design variables are updated and the pro-
ess repeats by analyzing the new configuration that reflects the
pdated design variables. After each analysis, the cost function
nd gradients are typically monitored as an indication of how
ell the design process is proceeding.

.1. Sensitivity analysis

As mentioned in the previous section, the adjoint method is
sed to determine sensitivity derivatives for the cost function,
, described in Eq. (1). If R represents the vector of discrete
esiduals at each mesh point, an augmented cost function L can
e defined in the terms of the original cost function and the vector
f discrete residuals as following.

(Q(β), χ(β), β,Λ)=f (Q(β), χ(β), β) +ΛTR(Q(β), χ(β), β)

(2)
In Eq. (2),Λ is the vector of Lagrange multipliers (also known
s costate variables). Note that the augmented cost function, L,
s a scalar quantity that is identical to the original cost function
, when R(Q) is zero, indicating that the steady-state solution is

t
v

f
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btained. The mesh coordinates and design variables are denoted
s χ and β, respectively. Differentiating the augmented cost
unction with respect to each of the design variables yields the
ollowing set of equations for ∂L/∂β, which is a column vector
here each element represents the derivative of the augmented

ost function with respect to a particular design variable.

∂L

∂β
=

{
∂f

∂β
+

[
∂χ

∂β

]T
∂f

∂χ

}
+

[
∂Q

∂β

]T
{
∂f

∂Q
+

[
∂R

∂Q

]T

Λ

}

+
{[

∂R

∂β

]T

+
[
∂χ

∂β

]T[
∂R

∂χ

]T
}
Λ (3)

ecause the elements of Λ are arbitrary, the term involving
he derivatives of the dependent variables with respect to the
esign variables can be eliminated by solving a linear system
f equations for the costate variables, also known as the adjoint
quation.

∂R

∂Q

]T

Λ = −
{
∂f

∂Q

}
(4)

nce the costate variables are obtained, the derivatives of the
ost function with respect to all the design variables are obtained
sing a matrix-vector multiplication.

dL

dβ
=

{
∂f

∂β
+

[
∂χ

∂β

]T
∂f

∂χ

}
+

{[
∂R

∂β

]T

+
[
∂χ

∂β

]T[
∂R

∂χ

]T
}
Λ

(5)

In numerical simulations, the largest computational cost of
omputing sensitivity derivatives using the adjoint equations is
ue to the solution of the analysis equations and the adjoint
quation, both of which are independent of the number of design
ariables. The only dependency on the number of design vari-
bles is in the evaluation of Eq. (5), which is generally much
heaper to compute than either the analysis or adjoint solutions.
he result is a methodology that can be used for computing sen-
itivity derivatives for a large number of design variables that is
nly weakly dependent on the number of parameters used in the
esign.

.2. Linearization

Note that the terms in Eqs. (2)–(5) involve differentiation of
he discrete residual R, the cost function f, and the computa-
ional mesh χ with respect to the dependent variables Q, the
esign variables β, and the location of the mesh points χ. Cor-
ect implementation of this procedure can be extremely tedious
o accomplish by hand and the resulting code can be difficult
o maintain. To overcome the difficulties associated with hand
ifferentiation, the complex-variable technique of Burdyshaw
nd Anderson [15] and Nielsen and Kleb [23] has been used
or evaluating all the terms in the matrices required for solving

he adjoint equations and for evaluating Eq. (5) once the costate
ariables have been obtained.

The complex-variable technique is derived by expanding
unctions in terms of a complex-variable Taylor series as shown
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n Eq. (6). This particular example computes the nth element of
he right hand side vector [∂f/∂Q] of Eq. (4) by adding a complex
erturbation to the nth element of the Q.

(Qn + ih) = f (Qn) + ihf ′(Qn) + (ih)2f ′′(Qn)

2!

+ (ih)3f ′′′(Qn)

3!
+ (ih)4f ′′′′(Qn)

4!
+ O(h5)

=
[
f (Qn) − h2f ′′(Qn)

2!
+ h4f ′′′′(Qn)

4!

]

+i

[
hf ′(Qn) − h3f ′′′(Qn)

3!

]
+ O(h5) (6)

here, “i” denotes the imaginary part and “O” is the order of
ccuracy of the next term in the series. The imaginary and real
arts of the above expression can be written separately as shown
elow.

eal [f (Qn + ih)] ≈
[
f (Qn) − h2f ′′(Qn)

2!
+ h4f ′′′′(Qn)

4!

]
(7)

Imag [f (Qn + ih)]

h
≈

[
f ′(Qn) − h2f ′′′(Qn)

3!

]
(8)

qs. (7) and (8) can further be reduced to the following form to
btain both the function and the derivative with respect to Qn

ith second-order accuracy.

(Qn) = Real (f (Qn + ih)) + O(h2) (9)

′(Qn) = Imag (f (Qn + ih))

h
+ O(h2) (10)

This technique has been used for evaluating complicated
lgebraic expressions in refs. [27,28] and has been extended for
ost functions obtained through numerical simulations of par-
ial differential equations in refs. [11,12]. The significance of the
quation for the derivative is that by adding a complex pertur-
ation to the variable of interest and re-evaluating the function,
ensitivity derivatives can be obtained with relatively modest
odifications to an existing code. To develop a “forward mode”

ensitivity analysis code, the primary changes to an analysis code
nvolve converting real-valued variables to complex and adding
small complex perturbation to the design variable of interest.
fter executing the resulting code, the sensitivity derivatives are

asily harvested from the complex part of the solution.
Although the truncation error for this expression has the

ame order of accuracy as a real-valued central finite-difference
xpression, it is important to recognize that the above technique
oes not suffer from accuracy problems due to subtractive can-
ellation errors, which can often require making adjustments on
case-by-case basis when using finite differences. As a result,
erivatives accurate to numerical precision can be obtained using

he complex-variable technique by choosing a very small step
ize. The only requirement on the step size is that it should be
istinguishable from zero as represented by the computer. A sim-
le example of using the complex-variable technique is shown

b
r
d
t

Fig. 1. Derivatives obtained using finite-difference and complex-variables.

n Fig. 1, where the derivatives are obtained for a trigonometric
unction using a real-valued central finite-difference technique
nd the complex-variable technique. Fig. 1 shows the error in the
omputed derivatives obtained using both the central-difference
nd complex-variable methods plotted against the negative of
he logarithm of the step size. Initially, both methods exhibit
econd-order accuracy as demonstrated by the fact that a one
rder of magnitude reduction in the step size reduces the error
y two orders of magnitude. As the step size is continually
educed, the order of accuracy of the finite-difference method
ventually degrades and the error begins to increase with sub-
equent reduction in the step size. In contrast, the derivatives
omputed using the complex-variable technique continue to
xhibit true second-order accuracy regardless of the step size. In
ractice, the step size is chosen to be below the square root of
he machine zero, guaranteeing derivatives accurate to machine
recision.

In the context of the present work, the complex-variable tech-
ique is used to determine the elements of the matrices and
ectors in Eqs. (2)–(5). In each case, a complex perturbation is
dded to the appropriate variables with respect to which differen-
iation is required. For example, to compute the elements of the

atrix representing the linearization of the discrete residual with
espect to the flow variables ∂R/∂Q, a complex perturbation can
e added to a particular flow variable and the complex-valued
esidual may be computed at each mesh point so that each per-
urbation effectively yields a column of the matrix. However,
aive implementation of this technique would be very restric-
ive for three-dimensional problems due to the large number of
ow variables. To overcome this difficulty, the method described

n refs. [15,16] is used to exploit the fact that the computation
f each residual only depends on mesh points within a finite
tencil. In this method, the mesh is “colored” into a series of non-
verlapping stencils to allow multiple columns to be computed
imultaneously. By following this procedure, the computational

urden is significantly reduced, requiring only the number of
esidual computations as there are colors in the mesh. Further
etails of this technique are given in refs. [15,16]. A similar
echnique has been described in ref. [23].



3 ower

c
a
B
s
b
n
a
e
t
i

t
m
a
b
a
t
i
g
p
m
c
t
c
i
t
c
g
c
s
b
d
t
d
f
b
s
[

w
b
s
o
a
d
e
w
a
F
c
u
r
d
w
v
c

p
c
I
t
a
p
g
c
c
y
b
m

o
o
v
t

3

3

a
a
m
a
t
w
i
t
fusion, permeation and reaction kinetics. The anode is assumed
to be made of standard cermet as described in ref. [5], for which
properties are given in Table 1. Although details of the govern-
ing equations can be found in ref. [5], a summary is provided
80 S. Kapadia et al. / Journal of P

A few comments regarding the complex-variable approach in
omparison to automatic differentiation (AD) techniques such
s ADIFOR [29], ADIC [30] and TAMC [31] are in order.
ecause the complex-variable method can use arbitrarily small

tep sizes without suffering from subtractive cancellation errors,
oth methods can be used to determine sensitivity derivatives to
umerical accuracy. In this regard, each method may be viewed
s an alternative method for achieving the same goals. However,
ach method also has some advantages and disadvantages over
he other in terms of developing and maintaining software that
s continually evolving.

First, each method typically requires some modifications to
he analysis code before being able to extract derivative infor-

ation. In the complex-variable approach, the modifications
re required to change the declaration of floating-point num-
ers to be of complex data type, to modify comparisons to
ccount for mixing of complex and real-valued constants, and
o sometimes supply intrinsic functions that do not automat-
cally accept and return complex numbers. In the examples
iven in this paper, no new intrinsic functions had to be sup-
lied. For automatic differentiation, the analysis code is often
odified so that the automatic differentiation software can suc-

essfully process the analysis source code without errors. In
his regard, it should be noted that AD software accepts source
ode as input and generates new source code as output that
ncludes additional lines of code that provide the capability
o compute sensitivity derivatives. The types of source-level
hanges required depend somewhat on the computer lan-
uage and the specific AD software being used. However, the
hanges often include removing non-standard language exten-
ions, removing arrays of unspecified length, removing common
locks from FORTRAN code that are used to pass non-static
ata to subroutines, adding compiler directives to assist in
he generation of efficient code or preprocessing directives to
eal with parallelization, eliminating system calls, changing
unction calls to eliminate the use of a single variable for
oth input and output, removing comparisons between incon-
istent data types, and removing discontinuous flow control
32].

A performance comparison of the complex-variable approach
ith automatic differentiation is difficult to state categorically
ecause the performance of each approach is dependent on the
tructure of the analysis code, the computer language, compiler
ptions and source-level directives passed to the AD software,
nd whether or not further human generated modifications are
one to the source code generated by the AD software. Experi-
nce has shown that for the complex-variable approach, software
ritten in FORTRAN runs about twice as slow when complex

rithmetic is used in comparison to when real arithmetic is used.
or C++, there is a greater variation in run times depending on the
ompiler and the complex classes. The overhead associated with
sing complex arithmetic ranges from about 2–5. Relying on the
esults presented in ref. [32], the range of overhead for automatic

ifferentiation is between 2–8, although most of the results are
ithin a factor of about 2–4. Based on these results, the complex-
ariable and automatic differentiation approach exhibit roughly
omparative efficiency. F
Sources 166 (2007) 376–385

One feature of the complex-variable approach is that in the
rocess of converting the initial analysis code to accommodate
omplex arithmetic, the code can be made very easy to maintain.
n particular, as new capability is added or errors are corrected,
he software can be “self maintaining”. Code generated using
utomatic differentiation software can also be easily maintained
rovided extensive modifications are not required to the AD
enerated source code to obtain efficiency. In this regard, the
omplex-variable approach has the advantage that the source
ode used to obtain sensitivity derivatives is identical to the anal-
sis code so it is easy for developers to maintain. Code that has
een generated from automatic differentiation software includes
any new lines of code and can be difficult to follow.
Ultimately, both the complex-variable approach and the use

f automatic differentiation software are viable solutions for
btaining sensitivity derivatives. In this work, the complex-
ariable approach is used because the code is easy to use and
he code is easy to maintain.

. Results

.1. One-dimensional SOFC model

Initial use of the adjoint methodology is demonstrated for
numerical simulation similar to that described in ref. [5]

nd illustrated in Fig. 2. Here, the concentration of hydrogen,
ethane, carbon monoxide, carbon dioxide, and water vapor

re computed through the thickness of an anode with concen-
rations and pressure prescribed at the boundary of the anode
ith the fuel channel, and the current density is specified at the

nterface with the electrolyte. The simulation assumes a constant
emperature of 1123 K and includes molecular and Knudsen dif-
ig. 2. Computational domain for one-dimensional SOFC anode simulation.
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Table 1
Material properties and reaction rate constants from ref. [5]

kfr 8.0 × 10−11 kmol m−3 Pa−2 s−1

kbr 1.5 × 10−23 kmol m−3 Pa−4 s−1

kfs 3.2 × 10−11 kmol m−3 Pa−2 s−1

kbs 3.5 × 10−11 kmol m−3 Pa−2 s−1

ψ 1.56 × 10−1
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r〉 1.07 × 10−6 m
r2〉 3.8 × 10−11 m

elow to describe the level of physical modeling included in the
imulations.

The governing equations used in the simulations are based
n steady-state mass conservation for each species.

· Ji(Q) − Si(Q) = 0 (11)

n Eq. (11), Q represents the vector of solution variables. For
his particular problem, Q = [

ρH2O, ρH2 , ρCO, ρCO2 , ρCH4

]T,
here ρi denotes the mass concentration of the ith species.

i = MiNi (12)

Here, a subscript, “i”, is used to denote each of the species
ncluded in the simulation and Eq. (12) indicates the relationship
etween mass and molar fluxes. The source term “Si” indi-
ates the production and consumption of each species due to
hemical/electrochemical reactions.

The molar flux can be subdivided into (1) diffusion flux and
2) permeation flux as shown in Eq. (13).

i = Nd
i +N

p
i (13)

he Mean Transport Pore Model (MTPM) [33] is used to com-
ute the diffusion flux. According to MTPM,

Nd
i

Dkn
i

+
NS∑
j = 1

j �= i

XjN
d
i −XiN

d
j

Dmij
= −ct∇Xi (14)

here, superscripts “kn” and “m” stand for the Knudsen
nd effective binary diffusion coefficients, respectively. Eqs.
15)–(18) illustrate further details involved in computing the
forementioned diffusion fluxes [34,35].

m
ij = ψDij (15)

ij = 1.8823 × 10−2

√
T 3

(
1
Mi

+ 1
Mj

)
pσ2

ij(Ωd)ij
(16)

ij = σi + σj

2
(17.1)
Ωd)ij = 1.06036

T̂ 0.1561
+ 0.193

exp(0.47635T̂ )
+ 1.03587

exp(1.52996T̂ )

+ 1.76474

exp(3.89411T̂ )
(17.2)

p
a
fl
d
t
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ˆ = KT

εij
(17.3)

ij = √
εiεj (17.4)

kn
i = ψ 〈r〉 2

3

(
8RuT

πMi

)1/2

(18)

The permeation flux is given by Eq. (19), and is derived from
arcy’s law [33].

p
i = −XiBi∇ct (19)

Various terms appearing in this equation can be computed
sing Eqs. (20) and (21). Here, Bi is the effective permeability
oefficient of species i and is described by Eq. (20). Though sev-
ral different values are suggested for ω in the literature [5,33],
he present simulation uses the value of π/4. Also, the Knudsen
umber of each component is indicated by Kni.

i = Dkn
i

ωνi +Kni

1 +Kni
+

〈
r2

〉
ψp

8η
(20)

i =
√

Mi

Mmixture
(21.1)

mixture =
NS∑
i=1

XiMi (21.2)

The simulation presented in this paper considers two chem-
cal reactions, namely, methane reforming and water gas shift
eaction as presented by Eqs. (22.1) and (22.2), respectively.

H4 + H2O
kfr
�
kbr

CO + 3H2 (22.1)

O + H2O
kfs
�
kbs

CO2 + H2 (22.2)

eaction rates are computed using the global reaction model.
ccording to this model,

ater = kfrpCH4pH2O − kbrpCOp
3
H2

(23.1)

ates = kfspCOpH2O − kbspCO2pH2 (23.2)

ubscripts “r” and “s” stand for reforming and shift reactions,
espectively. Reaction rate constants are taken from [5] and are
lso tabulated in Table 1. The source terms for each species are
omputed using the above reactions rates.

Two boundary conditions are required to solve Eq. (11) in
single spatial direction. Dirichlet boundary conditions are

pplied on the boundary between the anode and the fuel channel,
.e. fixed values of mole fractions and pressure are specified. The
ressure is assumed to be one atmosphere and the mole fractions

re given in Table 2. At the anode–electrolyte interface the mass
ux of each species is specified to reflect a prescribed current
ensity of 3000 A m−2, which is a Neumann boundary condi-
ion. The following two electrochemical reactions are accounted



382 S. Kapadia et al. / Journal of Power Sources 166 (2007) 376–385

Table 2
Prescribed mole fractions at interface between anode and fuel channel

Species H H O CO CO CH

M

f

H

C

T
t
i

R

R

i
t
t
t
u
c
i
fi
o
A
e
r
t
u

i
m
t
f
S
b
d

a
o
v
p

Fig. 3. Molar rates of formation through the thickness of the anode.

v
c
o
v
f
b

T
C

C

F
A

2 2 2 4

ole fraction 0.263 0.493 0.029 0.044 0.171

or at the anode–electrolyte interface.

2 + 1

2
O2 → H2O (24.1)

O + 1

2
O2 → CO2 (24.2)

he current density is related to the species mass flux according
o Faraday’s law. Thus, conversion rates of the species involved
n above reactions can be written as the following.

ateH2 = (−RateH2O) = I

2F
(24.3)

ateCO = (−RateCO2 ) = I

2F
(24.4)

To solve the governing equations, the computational domain
s divided into a finite number of control volumes, and the par-
ial differential equations are discretized using a finite-volume
echnique. Newton’s method is used to solve the resulting sys-
em of nonlinear algebraic equations. Other methods could be
sed with no effect on the final solution. At each iteration, the
omplex-variable technique is used to fill the matrix represent-
ng the linearization of the discrete residuals with respect to the
eld variables. It should be noted that this matrix is the transpose
f the matrix required in the development of the adjoint method.
lthough the linearization can be accomplished by hand differ-

ntiation, the complexity of the fluxes shown in Eqs. (13)–(21)
equires significant effort to obtain an error-free implementa-
ion. In contrast, linearizing these fluxes is easily accomplished
sing the complex-variable approach.

For the first simulation, the computational domain is divided
nto 20 equally spaced intervals. Fig. 3 compares the molar for-

ation rates of all five species from the current simulation with
hose presented by Lehnert et al. [5]. The agreement is satis-
actory but indicates that there are some modeling differences.
pecifically, the binary diffusion coefficients and Knudson num-
ers used in ref. [5] are not given in the reference, and are likely
ifferent than those employed here.

To demonstrate the use of the adjoint method for sensitivity

nalysis, the cost function is chosen as the molar concentration
f hydrogen at the anode–electrolyte interface and the design
ariables include the ratio of porosity to tortuosity, the mean
ore radii, and the anode thickness. Although only three design

i
t
a
w

able 3
omparison between sensitivity derivatives obtained using the adjoint method and fin

ost function – molar concentration of hydrogen at anode–electrolyte interface

∂L/dta

inite differences 3.0103686566e-01
djoint 3.0103704637e-01
Fig. 4. Distribution of costate variables through thickness of the anode.

ariables are used, many more could be added without signifi-
antly impacting the computational cost. Fig. 4 shows the plot
f costate variables through the anode. Note that the costate
ariables do not typically follow trends exhibited by the species
ormation rates or other field variables such as concentrations,
ut are indicative of the sensitivity of the cost function to changes
n the residual. This can be seen from Eq. (5), where it is clear

hat in computing the sensitivity derivatives, the costate vari-
bles weight the contributions due to changes in the residuals
ith respect to the design variables.

ite-difference method

∂L/dψ ∂L/d〈r〉
−1.0500656390e-03 −7.2445001109e + 01
−1.0500656734e-03 −7.244506333e + 01
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Table 3 shows a comparison of sensitivity derivatives
btained using the adjoint formulation to those obtained using
centered finite-difference technique. For the adjoint results

hown in Fig. 4, a complex-valued step size of 1 × 10−8 is
sed when computing the linearizations. It should be noted that
maller step sizes have also been used without changing the
esults, indicating that the derivatives are consistent to machine
ccuracy. The step size for the finite-difference calculations is
× 10−5 and has been determined experimentally based on a
rocedure similar to that shown in Fig. 1. As seen, the com-
arisons of these results are excellent. However, it should be
oted that accurate sensitivity derivatives were obtained with
he finite-difference approach by a trial-and-error procedure to
etermine the optimal step size. Secondly, sensitivity deriva-
ives obtained using finite differences require a solution of the
overning equations for each design variable. Because this is a
ne-dimensional simulation and there are few design variables,
his cost is not prohibitive. However, for high-fidelity three-
imensional simulations, repeated computations to obtain the
ensitivity derivatives would be too costly if there are more than
ust a few design variables.

.2. Three-dimensional flow problem

To demonstrate the use of adjoint methodology for a case
ith a large number of design variables, sensitivity derivatives

re obtained for a three-dimensional fluid flow problem that is
epresentative of fuel flowing between channels in a fuel cell.
he geometry, illustrated in Fig. 5, is similar to that described in

ef. [36]. For this problem, the fluid enters the cell on the lower

eft and exits on the upper right after flowing through a series of

anifolds.
The numerical solution of this problem is obtained by

ssuming incompressible, non-reacting flow and using the three-

Fig. 5. Three-dimensional fuel cell geometry.

F
i
d

m
6
t
i
fl
o

a
c
c
I
i
a
o
o
v
o
s
g
f
o
F

Fig. 6. Contours of vertical velocity for initial flow solution.

imensional, implicit, unstructured Navier–Stokes flow solver
escribed in ref. [37]. This particular geometry is selected as it
esembles a shape of the planar type SOFC. Note that this sim-
lation does not include a high-fidelity physical model required
or a complete fuel cell simulation. However, the model is use-
ul for studying general flow distribution between the channels.
urthermore, it provides an excellent example for demonstrat-

ng the use of the adjoint method for determining sensitivity
erivatives for a large number of design variables.

The mesh includes approximately 55,000 hexahedral ele-
ents and about 86,000 nodes. Of these nodes, approximately

0,000 are distributed along the surfaces of the geometry. Con-
ours of the computed vertical velocity components are depicted
n Fig. 6. As seen in the figure, a disparate portion of the mass
ow traverses through the channels closest to the inlet and exit
pening.

To obtain better distribution of fuel amongst the channels,
cost function is evaluated along the plane seen in Fig. 5. The

ost function is the sum of the deviation of the mass flow in each
hannel from the average mass flow through the overall cell [16].
n a design optimization, minimizing this cost function would
mprove distribution of the mass flow through each channel. The
djoint method has been used to obtain the sensitivity derivatives
f this cost function with respect to the coordinates of each node
n the surface of the geometry, yielding a total number of design
ariables in excess of 180,000. Fig. 7 depicts the gradient vectors
verlain on top of the vertical velocity contours indicating the
ensitivity of the objective function to changes in the surface

eometry. Although sensitivity derivatives have been obtained
or all the surface points in the mesh to demonstrate the utility
f the adjoint method, an examination of the gradient vectors in
ig. 7 suggests that the sensitivity derivatives are largest along
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Fig. 7. Gradients of design variables.

he upper and lower walls. New design variables are therefore
btained by grouping the original design variables on the upper

nd lower walls to allow ramping of the upper and lower plenum
urfaces. Similar grouping of design variables in this manner is
ften used to prevent oscillations from appearing in the surface
nd to simplify the design space. Results of the flow distribution

Fig. 8. Vertical velocity contours after modifying upper and lower walls.
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fter one design iteration using steepest descent are shown in
ig. 8. As seen in the figure, modifying the shape of the upper and

ower walls has dramatically improved the distribution of fuel
hrough the channels. In addition, the cost function is reduced
y a factor of four.

. Conclusions and future work

An adjoint based sensitivity analysis technique has been
eveloped and demonstrated for applications to solid-oxide fuel
ells. Sensitivity analysis is demonstrated for a one-dimensional
ransport problem through the anode of a solid-oxide fuel cell,
here the physical model includes multicomponent diffusion,
ermeation, and appropriate chemical and electrochemical reac-
ions. The accuracy of sensitivity derivatives is established for
esign variables describing geometric and material properties of
he anode.

Because one of the strengths of adjoint methods is in deter-
ining sensitivity derivatives for large numbers of design

ariables, the adjoint method is further demonstrated on a
hree-dimensional design problem where the objective is to
chieve equal distribution of fluid between multiple channels
n a manifold geometry. Sensitivity derivatives are obtained for
pproximately 180,000 design variables describing the geome-
ry of the cell. This problem emphasizes the usefulness of adjoint

ethods in obtaining sensitivity derivatives for a design problem
ith many parameters, which may otherwise be prohibitively

xpensive to compute by individually changing each parameter
nd re-running the entire simulation. The results of the sensitiv-
ty analysis are used to improve the distribution of fluid amongst
he channels by grouping the design variables to describe the
otational positions of the upper and lower walls. Adjusting the
alls accordingly results in much improved distribution of fluid

n the channels.
Future work is targeted at further developing the adjoint

ethod for industrial applications to fuel cell designs. This work
ncludes merging more realistic physical models into the three-
imensional simulation and adjoint codes as well as coupling
he sensitivity analysis with formal optimization procedures.
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